- 產(chǎn)品描述
甲型/乙型流感雙通道核酸檢測(cè)試劑盒
廣州健侖生物科技有限公司
廣州健侖長(zhǎng)期供應(yīng)各種流感檢測(cè)試劑,包括進(jìn)口和國(guó)產(chǎn)的品牌,主要包括日本富士瑞必歐、日本生研、美國(guó)BD、美國(guó)NovaBios、美國(guó)binaxNOW、凱必利、廣州創(chuàng)侖等主流品牌。
甲型/乙型流感雙通道核酸檢測(cè)試劑盒
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
想了解更多的產(chǎn)品及服務(wù)請(qǐng)掃描下方二維碼:
【公司名稱】 廣州健侖生物科技有限公司
【市場(chǎng)部】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-103室
空間細(xì)胞的培養(yǎng)應(yīng)是無菌的,細(xì)胞應(yīng)在即將發(fā)射之前放人飛船。各種細(xì)胞是有可能在軌道內(nèi)培養(yǎng)30天左右的。培養(yǎng)類型可以適用于懸浮、貼附的動(dòng)植物細(xì)胞,動(dòng)物組織,細(xì)菌和微小的非飼養(yǎng)類的微生物。新鮮細(xì)胞可來自輸送到ISS的凍存細(xì)胞。3、10或30ml培養(yǎng)體系需維持在4~40°C和適當(dāng)?shù)臐穸取H下、二氧化碳、氧氣濃度均嚴(yán)格控制在一個(gè)大氣壓下。用相差/熒光顯微鏡可觀察到細(xì)胞的圖象,如果需要,圖象數(shù)據(jù)能被發(fā)回地面實(shí)驗(yàn)室。作為參照,可以在空間站做人工重力環(huán)境下(0.1~2.0 g)的對(duì)照實(shí)驗(yàn)。營(yíng)養(yǎng)物或特殊添加劑(如為方便在地面進(jìn)一步研究所需的終止實(shí)驗(yàn)樣本的固定劑)被自動(dòng)加入,代謝廢物也能自動(dòng)被去除。標(biāo)本或培養(yǎng)基質(zhì)可在軌道直接進(jìn)行及時(shí)的操作或凍存。一些基本的操作,如溶液混合、核酸抽提、胰酶消化、過濾、濃縮,可用半自動(dòng)化的方法,或由宇航員協(xié)助。由于空問飛行研究的費(fèi)用昂貴,進(jìn)人空間的機(jī)會(huì)難得,并受到運(yùn)載能力等的限制,同時(shí)也為確保難得和昂貴的空間試驗(yàn)的成功,十分需要首先在地面進(jìn)行大量的預(yù)試驗(yàn),以提高空間試驗(yàn)的安全性和可靠性。國(guó)外的經(jīng)驗(yàn)表明,一次成功的飛行試驗(yàn)往往需要事先經(jīng)過約2年左右時(shí)間的地面研究積累。這也要求我們?cè)O(shè)計(jì)制造各種模擬微重力效應(yīng)的裝置來進(jìn)行空間細(xì)胞培養(yǎng)的地面研究。目前主要的地面模擬裝置有回轉(zhuǎn)器(clinostat)、隨機(jī)定位機(jī)(random positioning machine,or tridimensional clinostat)、轉(zhuǎn)壁容器(rotating wall vessel)、細(xì)胞培養(yǎng)艙(cell culture module,CCM)、自由落體機(jī)(free fall machine)等。
當(dāng)前細(xì)胞科學(xué)面臨的挑戰(zhàn)是,絕大多數(shù)細(xì)胞培養(yǎng)產(chǎn)生的是單細(xì)胞層的標(biāo)本,而我們迫切需要了解的是細(xì)胞之間怎樣相互協(xié)同工作??臻g試驗(yàn)表明,細(xì)胞在微重力下具有類似于在活體內(nèi)的三維生長(zhǎng)的潛能。NASA的Johnson空間中心研制的生物反應(yīng)器系統(tǒng)是解決這一問題的有效嘗試。作為研究微重力效應(yīng)對(duì)于細(xì)胞影響的模型,它的核心是一個(gè)轉(zhuǎn)壁容器,包括慢轉(zhuǎn)橫管(slow turing lateral vessel)和高位轉(zhuǎn)管(high aspeet rotating vessel),通過旋轉(zhuǎn)含有培養(yǎng)細(xì)胞的液體培養(yǎng)基來中和重力效應(yīng),在一個(gè)較大剪切力范圍內(nèi)(0.2~0.92 dyn/cm2)進(jìn)行模擬研究,使細(xì)胞能以近似自然的方式生長(zhǎng)。
The c*tion of space cells should be sterile, and the cells should be released into the spacecraft just prior to launch. A variety of cells is likely to train in orbit about 30 days. The type of culture can be applied to suspended, attached animal and plant cells, animal tissues, bacteria and tiny non-reared microorganisms. Fresh cells can come from cryopreserved cells that are delivered to the ISS. 3, 10 or 30ml culture system needs to be maintained at 4 ~ 40 ° C and the appropriate humidity, pH, carbon dioxide, oxygen concentrations are strictly controlled at one atmosphere. The images of the cells are visualized by phase contrast / fluorescence microscopy, and the image data can be sent back to the ground lab if needed. As a reference, the control experiment in artificial gravity environment (0.1 ~ 2.0 g) can be done in the space station. Nutrients or special additives, such as fixatives that terminate the experimental sample for further study on the ground, are automatically added and the metabolic waste can also be automatically removed. Specimens or culture medium can be directly in the track or timely operation or frozen storage. Some basic operations such as solution mixing, nucleic acid extraction, trypsinization, filtration, concentration, semi-automated methods available, or assisted by astronauts. Due to the high cost of access flight studies, the rare opportunity to enter space and constraints on carrying capacity and the like, and to ensure the success of rare and costly space trials, it is highly desirable to conduct a large number of preliminary tests on the ground to increase Space test safety and reliability. Experience from abroad shows that a successful flight test often requires ground research accumulated in advance for about two years. This also requires us to design and manufacture a variety of devices to simulate the effects of microgravity for the study of terrestrial cell culture. At present, the main ground simulation devices are clinostat, random positioning machine, or tridimensional clinostat, rotating wall vessel, cell culture module (CCM), free-fall machine free fall machine.
The current challenge in cell science is that the vast majority of cell cultures produce unicellular samples, and what we need urgently to understand is how cells work together. Space experiments show that cells have the potential to resemble three-dimensional growth in vivo under microgravity. The bioreactor system developed by NASA's Johnson Space Center is an effective attempt to solve this problem. As a model for studying the effects of microgravity on cells, it is centered around a transcantile vessel, including a slow turing lateral vessel and a high aspeet rotating vessel, by spinning a liquid containing cultured cells Base to neutralize the gravitational effect, simulating studies within a large shear range (0.2 to 0.92 dyn / cm2) allows cells to grow in a nearly natural manner.